organic compounds

 $\times 0.25 \text{ mm}$

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

9-(2-Chlorobenzyloxy)-6,7-dihydro-2*H*benzo[c][1,2,4]triazolo[4,3-*a*]azepin-3(5*H*)-one

Da-Cheng Jin,^a Wen-Bin Zhang,^b Feng-Yu Piao^b and Rong-Bi Han^c*

^aInstitute of Chemical Technology of Yanbian University, Yanji 133002, Jilin Province, People's Republic of China, ^bDepartment of Chemistry, College of Science, Yanbian University, Yanji 133002, Jilin Province, People's Republic of China, and ^cKey Laboratory of Natural Resources of Changbai Mountain & Functional Molecules (Yanbian University), Ministry of Education, Yanji 133002, Jilin Province, People's Republic of China

Correspondence e-mail: rongbihan@ybu.edu.cn

Received 7 June 2011; accepted 22 June 2011

Key indicators: single-crystal X-ray study; T = 291 K; mean σ (C–C) = 0.002 Å; R factor = 0.040; wR factor = 0.113; data-to-parameter ratio = 16.4.

In the title molecule, $C_{18}H_{16}CIN_3O_2$, the seven-membered ring adopts an envelope conformation with the flap atom deviating by 0.801 (5) Å from the mean plane formed by the remaining non-H atoms. Intermolecular N-H···O hydrogen bonds link the molecules into centrosymmetric dimers. The crystal packing also exhibits weak intermolecular C-H···N hydrogen bonds and π - π interactions with a short distance of 3.734 (3) Å between the centroids of the aromatic rings of neighbouring molecules.

Related literature

For background and details of the synthesis, see: Piao *et al.* (2011); Jin *et al.* (2006). For related structures, see: Han *et al.* (2010); Jin *et al.* (2010).

Experimental

Crystal data C₁₈H₁₆ClN₃O₂

 $M_r = 341.79$

Monoclinic, $C2/c$	Z = 8
a = 28.421 (11) Å	Mo $K\alpha$ radiation
b = 8.009 (4) Å	$\mu = 0.26 \text{ mm}^{-1}$
c = 14.896 (8) Å	$T = 291 { m K}$
$\beta = 112.654 \ (18)^{\circ}$	$0.35 \times 0.28 \times 0.2$
V = 3129 (3) Å ³	

Data collection

Rigaku R-AXIS RAPID	14713 measured reflections
diffractometer	3569 independent reflections
Absorption correction: multi-scan	3033 reflections with $I > 2\sigma(I)$
(ABSCOR; Higashi, 1995)	$R_{\rm int} = 0.019$
$T_{\min} = 0.914, \ T_{\max} = 0.938$	

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.040$	217 parameters
$wR(F^2) = 0.113$	H-atom parameters constrained
S = 1.07	$\Delta \rho_{\rm max} = 0.21 \text{ e } \text{\AA}^{-3}$
3569 reflections	$\Delta \rho_{\rm min} = -0.36 \text{ e } \text{\AA}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

	$D \cdots A$	$D - H \cdots A$
5 1.95	2.7986 (17)	170
7 2.66	3.410 (2)	134
	6 1.95 7 2.66	6 1.95 2.7986 (17) 7 2.66 3.410 (2)

Symmetry codes: (i) $-x + \frac{3}{2}, -y + \frac{5}{2}, -z + 1$; (ii) $x, -y + 2, z - \frac{1}{2}$.

Data collection: *RAPID-AUTO* (Rigaku, 1998); cell refinement: *RAPID-AUTO*; data reduction: *CrystalStructure* (Rigaku/MSC, 2002); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *PLATON* (Spek, 2009); software used to prepare material for publication: *SHELXL97*.

The authors acknowledge financial support from the National Natural Science Foundation of China (grant No. 20662010) and the Specialized Research Fund for the Doctoral Progam of Higher Education (grant No. 2006184001).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CV5117).

References

Han, R.-B., Zhang, B. & Piao, F.-Y. (2010). Acta Cryst. E66, 02775.

- Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
- Jin, D.-C., Piao, F.-Y. & Han, R.-B. (2010). Acta Cryst. E66, o2504.
- Jin, H. G., Sun, X. Y., Chai, K. Y., Piao, H. R. & Quan, Z. S. (2006). Bioorg. Med. Chem. 14, 6868–6873.
- Piao, F. Y., Han, R. B., Zhang, W., Zhang, W. B. & Jiang, R. S. (2011). Eur. J. Med. Chem. 46, 1050–1055.

Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.

- Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Spek, A. L. (2009). Acta Cryst. D65, 148-155.

supplementary materials

Acta Cryst. (2011). E67, o1821 [doi:10.1107/S1600536811024470]

9-(2-Chlorobenzyloxy)-6,7-dihydro-2H-benzo[c][1,2,4]triazolo[4,3-a]azepin-3(5H)-one

D.-C. Jin, W.-B. Zhang, F.-Y. Piao and R.-B. Han

Comment

The title compound (I) was obtained from the reaction of 7-alkoxy-2,3,4,5-tetrahydro-1*H*-benzo[*c*]azepin-1-thione and methyl hydrazinocarboylate in n-butanol (Piao *et al.* 2011; Jin *et al.* 2006), but its structure can not be confirmed with 13 C-NMR spectra. Herein we report its crystal structure.

In (I) (Fig. 1), all bond lengths and angles are normal and correspond to those reported for the related compounds (Han *et al.* 2010; Jin *et al.* 2010). Except C15, all non-hydrogen atoms lie in a plane with r.m.s of 0.0406 (9) Å. Intermolecular N—H···O hydrogen bonds (Table 1) link the molecules into centrosymmetric dimers. The crystal packing exhibits weak intermolecular C—H···N hydrogen bonds (Table 1) and π — π interactions with the short distence of 3.734 (3) Å between the centroids of aromatic rings from the neighbouring molecules.

Experimental

The title compound was prepared according to the literature (Piao *et al.*, 2011; Jin *et al.*, 2006). Single crystals suitable for X-ray diffraction were prepared by slow evaporation a mixture of n-butanol and ethanol (1:1) at room temperature.

Refinement

C-bound H atoms were placed in calculated positions (C—H 0.93-0.97 Å) and were included in the refinement in the riding model, with $U_{iso}(H) = 1.2 U_{eq}(C)$. The H atom bound to N3 was placed in the calculated position with N—H = 0.86 Å and refined with $U_{iso}(H) = 1.2 U_{eq}(N)$.

Figures

Fig. 1. The molecular structure of (I) with the atom numbering. Displacement ellipsoids are drawn at the 30% probability level.

9-(2-Chlorobenzyloxy)-6,7-dihydro-2H- benzo[c][1,2,4]triazolo[4,3-a]azepin-3(5H)-one

 Crystal data

 $C_{18}H_{16}CIN_3O_2$ F(000) = 1424

 $M_r = 341.79$ $D_x = 1.451 \text{ Mg m}^{-3}$

 Monoclinic, C2/c Mo Ka radiation, $\lambda = 0.71073 \text{ Å}$

 Hall symbol: -C 2yc
 Cell parameters from 12565 reflections

 a = 28.421 (11) Å $\theta = 3.1-27.6^{\circ}$

b = 8.009 (4) Å
c = 14.896 (8) Å
$\beta = 112.654 \ (18)^{\circ}$
$V = 3129 (3) \text{ Å}^3$
Z = 8

Data collection	
Rigaku R-AXIS RAPID diffractometer	3569 independent reflections
Radiation source: fine-focus sealed tube	3033 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.019$
ω scans	$\theta_{\text{max}} = 27.5^{\circ}, \ \theta_{\text{min}} = 3.1^{\circ}$
Absorption correction: multi-scan (<i>ABSCOR</i> ; Higashi, 1995)	$h = -35 \rightarrow 36$
$T_{\min} = 0.914, \ T_{\max} = 0.938$	$k = -8 \rightarrow 10$
14713 measured reflections	$l = -19 \rightarrow 19$

 $\mu = 0.26 \text{ mm}^{-1}$ T = 291 KBlock, colourless $0.35 \times 0.28 \times 0.25 \text{ mm}$

Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.040$	Hydrogen site location: inferred from neighbouring sites
$wR(F^2) = 0.113$	H-atom parameters constrained
<i>S</i> = 1.07	$w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0667P)^{2} + 1.2865P]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
3569 reflections	$(\Delta/\sigma)_{\text{max}} = 0.002$
217 parameters	$\Delta \rho_{max} = 0.21 \text{ e} \text{ Å}^{-3}$
0 restraints	$\Delta \rho_{min} = -0.36 \text{ e } \text{\AA}^{-3}$

Special details

Experimental. (See detailed section in the paper)

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

z

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

x

y

C1	1.12595 (5)	0.48226 (18)	0.42519 (11)	0.0357 (3)
C2	1.17285 (6)	0.4037 (2)	0.45532 (13)	0.0466 (4)
H2	1.1863	0.3715	0.4102	0.056*
C3	1.19933 (6)	0.3737 (2)	0.55289 (14)	0.0499 (4)
H3	1.2310	0.3217	0.5740	0.060*
C4	1.17895 (5)	0.4207 (2)	0.61950 (12)	0.0441 (4)
H4	1.1965	0.3982	0.6853	0.053*
C5	1.13222 (5)	0.50153 (17)	0.58801 (11)	0.0348 (3)
Н5	1.1189	0.5342	0.6334	0.042*
C6	1.10491 (5)	0.53472 (15)	0.49043 (10)	0.0285 (3)
C7	1.05452 (5)	0.62455 (16)	0.45363 (9)	0.0302 (3)
H7A	1.0568	0.7245	0.4188	0.036*
H7B	1.0283	0.5531	0.4091	0.036*
C8	0.99692 (4)	0.75568 (15)	0.51182 (9)	0.0280 (3)
С9	0.98445 (5)	0.80010 (17)	0.58989 (9)	0.0321 (3)
Н9	1.0058	0.7714	0.6530	0.038*
C10	0.94008 (5)	0.88719 (17)	0.57312 (9)	0.0305 (3)
H10	0.9319	0.9164	0.6257	0.037*
C11	0.90681 (4)	0.93338 (15)	0.47889 (9)	0.0256 (2)
C12	0.91964 (5)	0.88864 (16)	0.40076 (9)	0.0283 (3)
C13	0.96483 (5)	0.79982 (17)	0.41914 (9)	0.0300 (3)
H13	0.9734	0.7697	0.3671	0.036*
C14	0.88795 (6)	0.9227 (2)	0.29509 (10)	0.0419 (4)
H14A	0.8630	0.8338	0.2711	0.050*
H14B	0.9101	0.9166	0.2594	0.050*
C15	0.85993 (5)	1.08733 (19)	0.27128 (10)	0.0378 (3)
H15A	0.8820	1.1745	0.3106	0.045*
H15B	0.8521	1.1141	0.2035	0.045*
C16	0.81139 (6)	1.0853 (2)	0.28893 (10)	0.0455 (4)
H16A	0.7919	1.1848	0.2605	0.055*
H16B	0.7913	0.9893	0.2563	0.055*
C17	0.86043 (4)	1.02428 (15)	0.47298 (9)	0.0261 (2)
C18	0.78474 (5)	1.15106 (18)	0.42277 (10)	0.0325 (3)
C11	1.091807 (19)	0.51334 (6)	0.30151 (3)	0.05919 (16)
N1	0.81980 (4)	1.07857 (14)	0.39169 (8)	0.0305 (2)
N2	0.85271 (4)	1.05951 (16)	0.55146 (8)	0.0359 (3)
N3	0.80577 (4)	1.13648 (16)	0.51955 (9)	0.0377 (3)
H3A	0.7916	1.1713	0.5577	0.045*
01	1.04149 (3)	0.66817 (13)	0.53366 (7)	0.0348 (2)
02	0.74323 (4)	1.21405 (16)	0.37020 (7)	0.0452 (3)
	- /			

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0366 (7)	0.0354 (7)	0.0399 (7)	0.0023 (5)	0.0201 (6)	-0.0008 (6)
C2	0.0399 (8)	0.0489 (9)	0.0607 (10)	0.0052 (6)	0.0300 (7)	-0.0076 (7)
C3	0.0278 (7)	0.0536 (9)	0.0658 (11)	0.0099 (6)	0.0153 (7)	-0.0039 (8)
C4	0.0295 (7)	0.0483 (9)	0.0469 (8)	0.0033 (6)	0.0065 (6)	0.0015 (7)

supplementary materials

C5	0.0297 (6)	0.0379 (7)	0.0374 (7)	0.0015 (5)	0.0136 (5)	-0.0019 (5)
C6	0.0268 (6)	0.0254 (6)	0.0361 (7)	0.0002 (4)	0.0152 (5)	-0.0015 (5)
C7	0.0297 (6)	0.0309 (6)	0.0319 (6)	0.0050 (5)	0.0140 (5)	0.0004 (5)
C8	0.0246 (6)	0.0266 (6)	0.0338 (6)	0.0033 (4)	0.0124 (5)	-0.0002 (5)
C9	0.0298 (6)	0.0386 (7)	0.0265 (6)	0.0061 (5)	0.0094 (5)	0.0021 (5)
C10	0.0302 (6)	0.0379 (7)	0.0259 (6)	0.0049 (5)	0.0136 (5)	-0.0007 (5)
C11	0.0251 (6)	0.0261 (6)	0.0271 (6)	0.0012 (4)	0.0119 (4)	-0.0007 (4)
C12	0.0288 (6)	0.0311 (6)	0.0268 (6)	0.0047 (5)	0.0127 (5)	0.0017 (5)
C13	0.0310 (6)	0.0338 (7)	0.0294 (6)	0.0057 (5)	0.0163 (5)	-0.0007 (5)
C14	0.0463 (8)	0.0545 (9)	0.0259 (7)	0.0207 (7)	0.0149 (6)	0.0019 (6)
C15	0.0440 (8)	0.0460 (8)	0.0253 (6)	0.0127 (6)	0.0154 (5)	0.0060 (5)
C16	0.0358 (7)	0.0739 (11)	0.0235 (6)	0.0178 (7)	0.0077 (5)	-0.0028 (6)
C17	0.0257 (6)	0.0277 (6)	0.0264 (6)	0.0021 (4)	0.0119 (4)	0.0002 (4)
C18	0.0277 (6)	0.0399 (7)	0.0325 (6)	0.0050 (5)	0.0145 (5)	-0.0021 (5)
Cl1	0.0724 (3)	0.0747 (3)	0.0384 (2)	0.0194 (2)	0.0300 (2)	0.00614 (19)
N1	0.0249 (5)	0.0410 (6)	0.0260 (5)	0.0065 (4)	0.0101 (4)	-0.0024 (4)
N2	0.0334 (6)	0.0482 (7)	0.0292 (6)	0.0144 (5)	0.0156 (5)	0.0031 (5)
N3	0.0325 (6)	0.0529 (7)	0.0325 (6)	0.0155 (5)	0.0179 (5)	0.0019 (5)
01	0.0293 (5)	0.0439 (6)	0.0324 (5)	0.0127 (4)	0.0133 (4)	0.0010 (4)
O2	0.0291 (5)	0.0698 (7)	0.0355 (5)	0.0178 (5)	0.0113 (4)	-0.0014 (5)

Geometric parameters (Å, °)

C1—C2	1.383 (2)	C11—C12	1.3938 (18)
C1—C6	1.3879 (19)	C11—C17	1.4785 (16)
C1—Cl1	1.7379 (18)	C12—C13	1.4000 (17)
C2—C3	1.376 (3)	C12—C14	1.5071 (19)
С2—Н2	0.9300	С13—Н13	0.9300
C3—C4	1.380 (2)	C14—C15	1.510 (2)
С3—Н3	0.9300	C14—H14A	0.9700
C4—C5	1.387 (2)	C14—H14B	0.9700
C4—H4	0.9300	C15—C16	1.501 (2)
C5—C6	1.384 (2)	C15—H15A	0.9700
С5—Н5	0.9300	C15—H15B	0.9700
C6—C7	1.5048 (17)	C16—N1	1.4565 (19)
C7—O1	1.4214 (17)	C16—H16A	0.9700
С7—Н7А	0.9700	C16—H16B	0.9700
С7—Н7В	0.9700	C17—N2	1.3008 (18)
C8—O1	1.3726 (15)	C17—N1	1.3827 (16)
C8—C13	1.3759 (19)	C18—O2	1.2441 (16)
C8—C9	1.3865 (19)	C18—N3	1.3363 (19)
C9—C10	1.3770 (18)	C18—N1	1.3782 (16)
С9—Н9	0.9300	N2—N3	1.3774 (15)
C10-C11	1.4066 (18)	N3—H3A	0.8600
C10—H10	0.9300		
C2—C1—C6	122.12 (14)	C11—C12—C14	125.62 (11)
C2—C1—Cl1	118.94 (12)	C13—C12—C14	115.49 (11)
C6—C1—Cl1	118.93 (11)	C8—C13—C12	122.04 (11)
C3—C2—C1	119.25 (14)	C8—C13—H13	119.0

C3—C2—H2	120.4	C12—C13—H13	119.0
C1—C2—H2	120.4	C12—C14—C15	116.89 (12)
C2—C3—C4	120.11 (14)	C12—C14—H14A	108.1
С2—С3—Н3	119.9	C15—C14—H14A	108.1
С4—С3—Н3	119.9	C12—C14—H14B	108.1
C3—C4—C5	119.77 (15)	C15—C14—H14B	108.1
C3—C4—H4	120.1	H14A—C14—H14B	107.3
С5—С4—Н4	120.1	C16—C15—C14	112.75 (14)
C6—C5—C4	121.43 (14)	С16—С15—Н15А	109.0
С6—С5—Н5	119.3	C14—C15—H15A	109.0
С4—С5—Н5	119.3	C16—C15—H15B	109.0
C5—C6—C1	117.29 (12)	C14—C15—H15B	109.0
C5—C6—C7	122.98 (11)	H15A—C15—H15B	107.8
C1—C6—C7	119.72 (12)	N1-C16-C15	113.26 (11)
O1—C7—C6	109.31 (11)	N1-C16-H16A	108.9
O1—C7—H7A	109.8	C15—C16—H16A	108.9
С6—С7—Н7А	109.8	N1—C16—H16B	108.9
O1—C7—H7B	109.8	C15—C16—H16B	108.9
С6—С7—Н7В	109.8	H16A—C16—H16B	107.7
Н7А—С7—Н7В	108.3	N2-C17-N1	110.23 (11)
O1—C8—C13	124.30 (11)	N2-C17-C11	120.56 (11)
O1—C8—C9	116.29 (11)	N1-C17-C11	129.18 (11)
C13—C8—C9	119.40 (12)	O2-C18-N3	129.51 (12)
С10—С9—С8	119.33 (12)	O2—C18—N1	126.32 (13)
С10—С9—Н9	120.3	N3—C18—N1	104.16 (11)
С8—С9—Н9	120.3	C18—N1—C17	107.84 (11)
C9—C10—C11	122.07 (12)	C18—N1—C16	119.35 (11)
С9—С10—Н10	119.0	C17—N1—C16	132.51 (11)
C11—C10—H10	119.0	C17—N2—N3	105.25 (11)
C12-C11-C10	118.30 (11)	C18—N3—N2	112.51 (10)
C12—C11—C17	126.21 (11)	C18—N3—H3A	123.7
C10—C11—C17	115.48 (11)	N2—N3—H3A	123.7
C11—C12—C13	118.86 (11)	C8—O1—C7	116.19 (10)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	$D\!\!-\!\!\mathrm{H}^{\dots}\!A$
N3—H3A····O2 ⁱ	0.86	1.95	2.7986 (17)	170
C15—H15B···N2 ⁱⁱ	0.97	2.66	3.410 (2)	134
Symmetry codes: (i) $-x+3/2$, $-y+5/2$, $-z+1$; (ii) x , $-y+2$, $z-1/2$.				

